一篇文章搞懂Python中的函数式编程
函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。
而函数式编程(请注意多了一个“式”字)——Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。
函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。
Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。
高阶函数
高阶函数英文叫Higher-order function。什么是高阶函数?我们以实际代码为例子,一步一步深入概念。
变量可以指向函数
以Python内置的求绝对值的函数abs()为例,调用该函数用以下代码:1
2
3
4
5
6
7# 调用abs()函数
In [1]: abs(-10)
Out[1]: 10
# 只写abs
In [3]: abs
Out[3]: <function abs>
依据如上例子,可见abs(-10)是对函数的调用,而只写abs是函数本身。
要获得函数调用结果,我们可以把结果赋值给变量:
1 | In [4]: x = abs(-10) |
但是,如果把函数本身赋值给变量呢?1
2
3
4In [6]: fun_abs = abs
In [8]: fun_abs
Out[8]: <function abs>
结论:函数本身也可以赋值给变量,即:变量可以指向函数。
1 | # 变量fun_abs已经指向`abs`函数本身,调用完全和abs一样 |
传入函数
既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。
一个最简单的高阶函数:
1 | In [10]: def add(x, y, f): |
我们将abs函数作为变量传给add()里的f作为高阶函数传参。然后在add里还调用了f的功能。 整个行为流有些像这样:
1 | x = -5 |
把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式。
map/reduce
Python内建了map()和reduce()函数。
我们先看map。map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
举例说明,比如我们有一个函数f(x)=x^2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:
1 | In [12]: def f(x): |
map()传入的第一个参数是f,即函数对象本身。由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。
然后是reduce()函数。
reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
1 | reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4) |
比方说对一个序列求和,就可以用reduce实现:1
2
3
4
5
6In [15]: from functools import reduce
In [16]: def add(x, y):
....: return x + y
....:
In [17]: reduce(add, [1, 2, 3, 4, 5])
Out[17]: 15
当然求和运算可以直接用Python内建函数sum(),没必要动用reduce。
但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场:
1 | In [18]: from functools import reduce |
做个练习,利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。输入:[‘adam’, ‘LISA’, ‘barT’],输出:[‘Adam’, ‘Lisa’, ‘Bart’]:
1 | """ |
第二个练习: Python提供的sum()函数可以接受一个list并求和,请编写一个prod()函数,可以接受一个list并利用reduce()求积:
1 | from functools import reduce |
练习三:利用map和reduce编写一个str2float函数,把字符串’123.456’转换成浮点数123.456:
1 | # -*- coding: utf-8 -*- |
filter
Python内建的filter()函数用于过滤序列。
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:1
2
3
4def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1,2,3,4,5,6,10,15]))
sorted
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
Python内置的sorted()函数就可以对list进行排序:
1 | 36, 5, -12, 9, -21]) sorted([ |
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
返回函数
高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:
1 | def calc_sum(*args): |
但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
1 | def lazy_sum(*args): |
当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:1
2
31, 3, 5, 7, 9) f = lazy_sum(
f
<function lazy_sum.<locals>.sum at 0x101c6ed90>
调用函数f时,才真正计算求和的结果:
1 | f() |
在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:
1 | 1, 3, 5, 7, 9) f1 = lazy_sum( |
f1()和f2()的调用结果互不影响。
闭包
注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
返回闭包时牢记的一点就是:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
匿名函数 lambda
当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。
在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算f(x)=x^2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:
1 | lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])) list(map( |
关键字lambda表示匿名函数,冒号前面的x表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
1 | lambda x: x * x f = |
同样,也可以把匿名函数作为返回值返回,比如:
1 | def build(x, y): |
Python对匿名函数的支持有限,只有一些简单的情况下可以使用匿名函数。
装饰器
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
1 | def now(): |
函数对象有一个name属性,可以拿到函数的名字:
1 | now.__name__ |
现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
1 | def log(func): |
观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
1 |
|
调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:
1 | now() |
把@log放到now()函数的定义处,相当于执行了语句:
1 | now = log(now) |
由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
1 | def log(text): |
这个3层嵌套的decorator用法如下:
1 |
|
偏函数
Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。
在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:
int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:1
2'12345') int(
12345
但int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:
1 | '12345', base=8) int( |
假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:1
2def int2(x, base=2):
return int(x, base)
这样,我们转换二进制就非常方便了:
1 | '1000000') int2( |
functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:
1 | import functools |
所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
注意到上面的新的int2函数,仅仅是把base参数重新设定默认值为2,但也可以在函数调用时传入其他值:
1 | '1000000', base=10) int2( |
最后,创建偏函数时,实际上可以接收函数对象、args和*kw这3个参数,当传入:
1 | int2 = functools.partial(int, base=2) |
实际上固定了int()函数的关键字参数base,也就是:1
int2('10010')
相当于:
1 | kw = { 'base': 2 } |
当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。